HORIBA
Search English
Global
  • Products
    • Automotive
    • Medical
    • Process and Environmental
    • Scientific and Analytical Instruments
    • Semiconductor
    • Water & Liquid
    • All products from A to Z
    • By Industry
      • Arts, Entertainment and Recreation
        • Art Conservation
        • Museums, Historical Sites and Similar Institutions
      • Education, R&D and Government Institutions
        • Universities
        • Research and Testing Laboratories
      • Energy and Environment
        • Why HORIBA
        • Hydrogen Energy
        • Energy Usage Optimization
        • Carbon Capture and Utilization
        • Battery
        • High efficiency of conventional energy sources and reduction of GHG emissions
      • Food and Beverage
        • Beverages
        • Food
      • Health Care
        • Biotechnology
        • HORIBA In Vitro Diagnostic solutions for human health care
        • Life Sciences
        • Pharmaceuticals and Medicine Manufacturing
      • Industrials
        • Building Products
        • Commercial and Professional Services
        • Electrical Equipment
        • Machinery
      • Information Technology
      • Materials
        • Chemicals
        • Chemical Manufacturing
        • Containers and Packaging
        • Nonferrous Metals
        • Nonmetallic Minerals
        • Paper, Forest Products and Manufacturing
        • Plastics and Rubber
        • Primary Metals
      • Mobility and Transportation
        • Automobiles and Components
        • Automotive Manufacturing
        • Other Transportation Equipment Manufacturing
      • Waste Management
        • Solid Waste Management and Remediation Services
        • Water Waste Management and Remediation Services
      • Water
    • By Technique
      • Atomic Spectroscopy
        • Energy Dispersive X-ray Fluorescence (ED-XRF)
        • Glow Discharge Optical Emission Spectrometry (GD-OES)
        • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Inorganic Elemental Analysis
        • Beta-ray Absorption Analyzer
      • Electrochemistry
        • Potentiometry based on Ion-Selective Electrode (ISE)
      • Life Science Techniques
        • Label-free Detection / Surface Plasmon Resonance Imaging (SPRi)
      • Mass Spectrometry
        • Plasma Profiling Time-Of-Flight Mass Spectrometry (PP-TOFMS)
        • Quadrupole Mass Spectrometry
      • Material Characterization
        • Centrifugal Sedimentation
        • Colorimetry
        • Condensation Particle Counter (CPC)
        • Coriolis Flowmetry
        • Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
        • Magneto-pneumatic Analysis
        • Mechanical Flowmetry
        • Pressure-based Mass Flowmetry
        • Spectroscopic Ellipsometry
        • Static Light Scattering (SLS) / Laser Diffraction Particle Size Distribution Analysis
        • Fluid Measurement and Control
      • Molecular Spectroscopy
        • Absorption and Transmission Spectroscopy (UV, Visible, NIR)
        • Cathodoluminescence (CL, CLUE)
        • Chemiluminescence
        • Fluorescence Spectroscopy
        • Fourier-Transform Infrared Spectroscopy (FTIR)
        • Non-Dispersive Infrared Spectroscopy (NDIR)
        • Non-Dispersive Ultra Violet Spectroscopy (NDUV)
        • Photoluminescence (PL) & Electroluminescence (EL)
        • Quantum Cascade Laser (QCL) Spectroscopy
        • Raman Imaging and Spectroscopy
      • Radioactivity
        • Crystal Scintillation
      • Surface Science Techniques
        • Plasma Profiling Time-Of-Flight Mass Spectrometry (PP-TOFMS)
        • AFM-Raman (co-localized measurements & TERS)
  • Applications
    • Arts, Entertainment and Recreation
      • Art Conservation
      • Museums, Historical Sites and Similar Institutions
    • Cosmetics
    • Education, R&D and Government Institutions
      • Universities
      • Research and Testing Laboratories
    • Energy and Environment
      • Why HORIBA
      • Hydrogen Energy
        • Global Initiatives
        • Global Trends and Strategies toward Carbon Neutrality
        • Fuel Cell Evaluation
        • FCEV / FCV Evaluation
        • Stationary Fuel Cells
        • Evaluation of Hydrogen and Ammonia Engine / Gas Turbine for Power Generation
        • Hydrogen Station Evaluation
        • Water Electrolysis Evaluation
        • Hydrogen Production Evaluation
      • Energy Usage Optimization
        • Energy Management System
        • Environmental Impact Assessment (LCA and GHG Protocol)
        • Battery Manufacturing/Recycling
      • Carbon Capture and Utilization
        • Reduce
        • Direct Carbon Capture
        • Carbon Recycling
      • Coal and Consumable Fuels
      • Electric Utilities
      • Energy Fuel Oil
      • Environmental Countermeasures
      • Petroleum and Coal Products Manufacturing
        • Petrochemicals
      • Photovoltaics
      • Oil and Gas
      • RoHS and ELV
    • Food and Beverage
      • Agriculture & Crop Science
      • Beverages
      • Food
      • Food & Beverage Manufacturing
    • Industrials
      • Battery
      • Commercial and Professional Services
        • Gas mass flow control and measurement for reference value of PM2.5 measurement
      • Construction & Engineering
      • Electrical Equipment
      • Machinery
    • Information Technology
      • Semiconductors
        • 2D Materials
        • Graphene
        • Photovoltaics
        • Display Technologies
        • Data Storage
        • Nanomaterials
      • Semiconductor Manufacturing Process
      • Technology Hardware and Equipment
    • Life Science
      • Biopharma and Pharma
        • Drug Development and Formulation
        • Process Development and Quality
        • PAT Solutions
        • Small Molecule Drugs
        • Protein Analysis
        • Cell Culture
        • New Modality
        • Microbial Testing
        • Low Molecular Drugs
      • Biotechnology and Biomedical
      • Cosmetics
      • Food and Beverage
    • Materials
      • Carbon
      • Polymers and Composites
      • Raw Materials for Semiconductors
      • Metals
      • Ceramics
      • Chemicals
      • Chemical Manufacturing
      • Construction Materials
      • Containers and Packaging
      • Nonmetallic Minerals
      • Paper, Forest Products and Manufacturing
      • Material Research
      • Photovoltaics
      • Forensics
      • Mining
    • Medical Diagnostics
    • Mobility and Transportation
      • Automotive Manufacturing
      • Engine, Turbine and Power Transmission Equipment Manufacturing
      • Real Driving Emissions
      • Intelligent Lab
      • Marine
    • Waste Management
      • Solid Waste Management and Remediation Services
      • Water Waste Management and Remediation Services
        • Waste Water and Soil Analysis
        • Waste Water Treatment and Disposal
      • Plastic Waste
    • Water
      • Drinking Water Utilities
      • Water Reuse
        • Water Testing
  • Technology
    • Elemental Analysis
      • Energy Dispersive X-ray Fluorescence (ED-XRF)
        • What is X-ray Fluorescence (XRF)?
        • What is X-ray Fluorescence Spectroscopy (micro-XRF)?
        • XRF Key Components
        • XRF Analysis
        • XRF Articles
        • HORIBA XRF Analyzers
      • Glow Discharge Optical Emission Spectroscopy
        • Glow Discharge Optical Emission Spectroscopy
        • Sample Measurement with GDOES
        • Sample Test and Analysis
        • Comparison with Other Techniques: Surface Analysis
        • Comparison with Other Techniques: Bulk Analysis
        • Instrument Introduction
        • Benefits and Features of Pulsed RF GDOES
        • Join the GD Community
        • Bibliography
      • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES)
        • Scientific ICP Spectrometers
        • Applications for ICP-OES
        • ICP-OES and other techniques
        • Principles and Theory
        • Instrumentation
        • Excitation Source
        • Dispersive System
        • Detection Systems Used with ICP-OES
        • Performances in ICP-OES
      • Carbon/Sulfur & Oxygen/Nitrogen/Hydrogen Analysis
    • Health Care
      • Multi Distribution Sampling System (MDSS)
      • Reticulocytes Analysis
      • CBC + CRP
      • Slide Production
      • Automatic Rerun
      • Absorbance
      • Fluorescence
      • Flow cytometry
      • Impedance / Resistivity
      • Sedimentation
      • Spectrophotometry
      • Potentiometry
      • INR screening
      • Clotting
      • Turbidimetric
      • Chromogenic
    • Particle Analysis
      • Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
      • Molecular Weight
      • Nanoparticle Tracking Analysis
      • Static Light Scattering (SLS) / Laser Diffraction Particle Size Distribution Analysis
      • Zeta Potential
      • Centrifugal Sedimentation
    • Fluid Control
      • Vaporization of Critical Process Chemistries
      • Coriolis Flowmetry
      • Thermal Mass Flowmetry
    • Mass Spectrometry
      • Quadrupole Mass Spectrometry
    • Microscopy and Imaging
      • AFM-Raman
        • AFM-Raman
        • What is Tip Enhanced Raman Spectroscopy?
        • What information does TERS provide?
        • How does enhancement of the Raman signal occur in TERS?
        • What are the TERS instrumental configurations?
        • What are the TERS tips materials and morphology?
        • What kind of substrates can be probed with TERS?
        • What is the SPM feedback used for TERS?
        • What is the spatial resolution of TERS?
        • What is the definition of TERS Enhancement factor?
        • What is nonlinear TERS?
        • What are the degradation issues and artifacts in TERS?
        • What are the main TERS applications in Materials Sciences?
        • What are the main Life Sciences TERS applications?
        • References
        • Products
      • Atomic Force Microscopy [AFM]
      • Cathodoluminescence
      • Image Analysis of Particles
      • Micro X-ray Fluorescence
      • Raman Microscopy
    • Physisorption
      • Surface Area
    • Spectroscopy
      • Cathodoluminescence Spectroscopy
        • Cathodoluminescence Spectroscopy
        • Electron Microscope
        • SEM, ESEM, SEM-FIB, (S)TEM
        • EM Add-on detector
        • SEM-Cathodoluminescence (SEM-CL)
      • AFM-Raman
      • Detectors
        • Detectors
        • What is a CCD Detector?
        • What is an EMCCD Detector?
        • How to Select a CCD Camera for Spectroscopic Applications
        • Wavelength and Pixel Position
        • Spectroscopy Detector Products
        • Scientific CCD Camera Products
      • 50 years of Diffraction Gratings
      • Diffraction Gratings Ruled and Holographic
      • Fluorescence Spectroscopy
        • Fluorescence Spectroscopy
        • Principles and Theory of Fluorescence Spectroscopy
        • What is the Jablonski Diagram?
        • What is a Fluorescence Measurement?
        • Steady State Fluorescence Techniques
        • What is Fluorescence Anisotropy or Fluorescence Polarization?
        • What are Luminescence Quantum Yields?
        • What is Ratiometric Fluorescence?
        • What is an Excitation Emission Matrix (EEM)?
        • What is A-TEEM spectroscopy?
        • What is Singlet Oxygen?
        • How to Calculate Signal to Noise Ratio
        • Fluorescence Lifetime Techniques
        • Products Using Fluorescence Spectroscopy
      • Quantum Cascade Laser (QCL) Spectroscopy
        • Optical Hardware
        • Concentration Calculation Algorithm
        • Application Fields
      • Raman Imaging and Spectroscopy
        • Raman Spectroscopy
        • History of Raman Spectroscopy
        • Application field
        • Comparison with other techniques
        • Raman analysis
        • Recording spectral images and profiles
        • Description: Combined/hybrid/hyphenated Raman system
        • Confocal Raman microscopy
        • Raman Spectrometer Presentation
        • How the technique is used
        • Raman Image Gallery
        • Related Products
      • Spectrometers and Monochromators
        • Monochromator System Optics
        • Bandpass and Resolution
        • Order, Resolution, and Dispersion
        • Choosing a Monochromator/ Spectrograph
        • Spectrometer Throughput and Etendue
        • Optical Signal to Noise Ratio and Stray Light
        • Entrance Optics
        • Spectrometer, Spectrograph and Monochromator Products
      • Spectroscopic Ellipsometry
        • Spectroscopic Ellipsometry
        • Advantages
        • Instrumentation
        • Measurement Techniques
        • Data Analysis
        • Cauchy dispersion module
        • Products
      • Vacuum Ultra Violet Spectroscopy
        • Vacuum Ultra Violet Spectroscopy
        • VUV technology
        • High Vacuum (HV), Ultra High Vacuum (UHV), gas purge
        • Light sources in VUV
        • VUV system: Detector
        • Aberration
        • References - Articles
      • X-ray Fluorescence
    • Surface Plasmon Resonance
      • Surface Plasmon Resonance imaging
        • Surface Plasmon Resonance Imaging (SPRi)
        • Brief History of the Technique
        • SPR Measurements, Application Field and Comparison with Other Techniques
        • The Basics of Label-free Biomolecular Interactions
        • Instrument Presentation
        • How SPRi is Used
        • Key Accessories. Sensorchips. Surface Chemistry
        • How are the Molecules Immobilized on the biochip?
        • Conclusion & Bibliography
  • Service
    • Analysis Services
      • Analysis Centers and Services
      • EMC Analysis Service
    • Calibration and Certification
      • Calibration Centers
    • Customer Support
      • HORIBA Medical Documentation Database
      • Medical Customer Support
      • On-Site Support
      • Software Upgrades
      • STARS Helpdesk
    • Maintenance
      • Dynamometer and Other Overhaul Services
      • Periodic Maintenance
    • Spare Parts and Consumables
    • Testing and Consulting
      • Automotive Testing Centers
    • Training
      • Product Training
        • Scientific Product Training
        • Automotive Product Training
        • Medical Product Training
      • Technology Training
  • Company
    • About HORIBA
      • Home
      • Message
      • Company Profile
      • Corporate Philosophy
      • Our Future (Vision, Mission, Values)
      • Corporate Governance
      • Board of Directors
      • Culture
      • History
        • 1945–1960s
        • 1970s
        • 1980s
        • 1990s
        • 2000s
        • 2010s
        • 2020s
      • HORIBA Report
      • Technical Journal "Readout"
        • Readout No. E58 - Analysis and Measurement Technologies that Contribute to the Development of Next Generation Semiconductor Devices
        • Readout No. E57 - HORIBA’s Initiatives in the Next-Generation Energy and Environment Fields
        • Readout No. E56 - Analytical Solutions in Megatrends
        • Readout No. E55 - 2021 Masao Horiba Awards - Spectroscopic analysis and measurement technology in the life science field
        • Readout No. E54 - Microplastics and Nanoplastics: Analysis and Method Development
        • Masao Horiba Awards Research Articles
        • Readout No. E53 - 2019 Masao Horiba Awards - Advanced Analytical and Measurement Technologies for Efficient Control System to Maximize the Performance of Electric Power and Batteries Usage
        • Readout No. E52 - Green Innovation for Marine Shipping Industry
        • Readout No. E51 - 2018 Masao Horiba Awards Advanced analytical and measurement technologies in semiconductor manufacturing processes
        • Readout No. E50 - Low-Carbon Society and Environmental Improvement
        • Readout No. E49 - Photonic Instrumentation in Life Science
        • Readout No. E48 - Water Measurement Experts
        • Readout No. E47 - Application for Semiconductor Manufacturing Process
        • Readout No. E46 - New Development for Automotive Test Systems
        • Readout No. E45 - Application Technology in Analysis
        • Readout No. E44 - Contribution of Diagnostics to Total Medical Care/Healthcare
        • Readout No. E43 - Watching the Environmental and Society with Measurements
        • Readout No. E42 - More Efficient Testing on Automotive Development, Improving the Accuracy of Fuel Consumption Measurement
        • Readout No. E41 - Application
        • Readout No. E40 - Application
        • Readout No. E18 - EUROPE
        • Readout No. E17 - AMERICA
        • Readout No. E16 - Chinese (Asia)
        • Readout No. E15 - Technologies for HORIBA STEC
        • Readout No. E14 - Masao HORIBA Awards"Measurement of Bioparticles" and "Measurement of Internal Combustion"
        • Readout No. E13 - Technologies for Automotive Testing
        • Readout No. E12 - Masao Horiba Awards "X-ray Analysis Technology"
        • Readout No. E11 - The Second Masao Horiba Awards
        • Readout No. E10 - Environmental Analysis Technologies for the Management of Global Environment and the Development of Industry
        • Readout No. E09 - The First Dr.Masao Horiba's Award and the 50th Anniversary Products
        • Readout No. E08 - Products and Technologies of HORIBA ABX
        • Readout No. E07 - Products and Technologies of Jobin Yvon HORIBA Group
        • Readout No. E06 - 50th Anniversary of HORIBA, Ltd. Products and Technology of HORIBA Group
        • Readout No. E05 - Semiconductor Instruments
        • Readout No. E04 - Hematology Instruments
        • Readout No. E03 - Paticulate Matter
        • Readout No. E02 - The Technology Alliance for X-ray Analysis
        • Readout No. E01 - the Analysis of the Global Environment
      • Group Companies
      • Virtual Patent Marking
    • Events
    • Career
    • Investor Relations
      • Home
      • Investor Relations News
      • IR Library
        • Financial Statements
        • Presentation Materials
        • HORIBA Report
      • Message from the CEO
      • Mid-Long Term Management Plan
      • Stock Information
      • Shareholders Meeting
      • Other IR Information
        • Investor Relations Calendar
        • Disclaimer
      • Investor Relations Contact
    • News
    • Social Responsibility
      • Home
      • Message
      • HORIBA's CSR
        • CSR Related Policy and Promotion System
        • Code of Ethics
        • UN Global Compact
        • HORIBA and the SDGs
        • Integrated Management System
      • Environment
        • Environmental Performance Indices
        • Eco-Friendly Products
        • Actions for RoHS Directive, REACH Regulation and GHS Regulations
      • Social
        • Home
        • Quality
        • Occupational safety and health
        • Promotion of Diversity
        • Material Procurement
        • Social Activities
      • Governance
        • Corporate Governance
        • Internal Controls
        • Compliance Promotion Systems
        • Risk Management
      • HORIBA Special Contents
      • Library
        • Back number of CSR Reports
      • HORIBA Group Social Media
        • Social Media Registered Accounts
        • HORIBA Group Social Media Policy
        • HORIBA Group Terms of Use for Social Media
  • Contact
    • Contact Form
    • Worldwide Locations

Technical Journal "Readout" open open
  • Readout No. E58 - Analysis and Measurement Technologies that Contribute to the Development of Next Generation Semiconductor Devices
  • Readout No. E57 - HORIBA’s Initiatives in the Next-Generation Energy and Environment Fields
  • Readout No. E56 - Analytical Solutions in Megatrends
  • Readout No. E55 - 2021 Masao Horiba Awards - Spectroscopic analysis and measurement technology in the life science field
  • Readout No. E54 - Microplastics and Nanoplastics: Analysis and Method Development
  • Masao Horiba Awards Research Articles
  • Readout No. E53 - 2019 Masao Horiba Awards - Advanced Analytical and Measurement Technologies for Efficient Control System to Maximize the Performance of Electric Power and Batteries Usage
  • Readout No. E52 - Green Innovation for Marine Shipping Industry
  • Readout No. E51 - 2018 Masao Horiba Awards Advanced analytical and measurement technologies in semiconductor manufacturing processes
  • Readout No. E50 - Low-Carbon Society and Environmental Improvement
  • Readout No. E49 - Photonic Instrumentation in Life Science
  • Readout No. E48 - Water Measurement Experts
  • Readout No. E47 - Application for Semiconductor Manufacturing Process
  • Readout No. E46 - New Development for Automotive Test Systems
  • Readout No. E45 - Application Technology in Analysis
  • Readout No. E44 - Contribution of Diagnostics to Total Medical Care/Healthcare
  • Readout No. E43 - Watching the Environmental and Society with Measurements
  • Readout No. E42 - More Efficient Testing on Automotive Development, Improving the Accuracy of Fuel Consumption Measurement
  • Readout No. E41 - Application
  • Readout No. E40 - Application
  • Readout No. E18 - EUROPE
  • Readout No. E17 - AMERICA
  • Readout No. E16 - Chinese (Asia)
  • Readout No. E15 - Technologies for HORIBA STEC
  • Readout No. E14 - Masao HORIBA Awards"Measurement of Bioparticles" and "Measurement of Internal Combustion"
  • Readout No. E13 - Technologies for Automotive Testing
  • Readout No. E12 - Masao Horiba Awards "X-ray Analysis Technology"
  • Readout No. E11 - The Second Masao Horiba Awards
  • Readout No. E10 - Environmental Analysis Technologies for the Management of Global Environment and the Development of Industry
  • Readout No. E09 - The First Dr.Masao Horiba's Award and the 50th Anniversary Products
  • Readout No. E08 - Products and Technologies of HORIBA ABX
  • Readout No. E07 - Products and Technologies of Jobin Yvon HORIBA Group
  • Readout No. E06 - 50th Anniversary of HORIBA, Ltd. Products and Technology of HORIBA Group
  • Readout No. E05 - Semiconductor Instruments
  • Readout No. E04 - Hematology Instruments
  • Readout No. E03 - Paticulate Matter
  • Readout No. E02 - The Technology Alliance for X-ray Analysis
  • Readout No. E01 - the Analysis of the Global Environment
    Company » About HORIBA » Technical Journal "Readout" » Readout No. E50 - Low-Carbon Society and Environmental Improvement

Low-Carbon Society and Environmental Improvement

Technical Journal "Readout"

Readout

READOUT is a technical journal issued by HORIBA. The name "READOUT" represents our sincere desire - helping readers understand the company's proprietary products and technologies by offering information about them. Since its first issue in July 1990, the journal has been published biannually.

Readout No. E50

Low-Carbon Society and Environmental Improvement

PDF
2.28 MB
thumbnail
Foreword: Seeking for the Flexible Action for Rapidly Changing Market Taking Advantage of Various Core Technologies
Author: Masayuki ADACHI; President & COO, HORIBA, Ltd. -HORIBA Group is emerging as a vital player in the energy management field from present fossil-fuel combustion to next-gen various source conversion, to electricity. Not just in the environmental and energy field, our mission will be to correspond quickly, and remain flexible when following changes in the global market. Focusing on miniaturization and verticalization in the semiconductor manufacturing process, AI technology introduction in the automotive, medical, and various industrial processes, or IoT (Internet of Things) expansion will directly impact the HORIBA Group enterprise. I shall review every HORIBA Group potential from higher viewpoint and charge into the next stage.
open
PDF
0.81 MB
thumbnail
Review: HORIBA’s Superior Techniques of Environmental Measurement Contribute to Creating a Low-Carbon Society
Author: Satoshi INOUE; HORIBA, Ltd. -In recent years, we are facing a turning point in energy supply. Historically, the energy-supply structure of the world has been based on fossil fuel from the Middle East and South America. Consumption of alternative energy is expanding to mass consumption regions and is dramatically changing the utilization profile. This report addresses the current situation and issues of the energy-supply structure. HORIBA’s measurement technologies are introduced for the energy-producing suppliers.
open
PDF
8.27 MB
thumbnail
Study on time variations of elemental composition and source of PM2.5 in Beijing
Author: Xiaoyang YANG, Shijie LIU; Atmospheric Environment Institute, Chinese Research Academy of Environmental Sciences, China -Chemical elements are major components of PM2.5 and crucial tracers to identify the source of aerosol particles using source apportionment models such as Positive Matrix Factorization (PMF) model and Chemical Mass Balance (CMB) model. In this study, PM2.5 samples were collected hourly from November 28, 2016, to May 30, 2017 in a chosen location within Beijing. Mass concentration and elemental composition were detected using an X-ray fluorescence-based online elemental analyzer (PX-375, Horiba, Kyoto, Japan).Based on the PMF source analysis, the primary sources of PM2.5 during the observation period in Beijing, in descending order of contribution to PM2.5, were secondary particles (44.0%), coal burning (28.3%), vehicle emission (17.2%), dust (7.9%), and fireworks (2.5%).
open
PDF
3.17 MB
thumbnail
Continuous Particulate Monitor with X-ray Fluorescence PX-375
Author: Erika MATSUMOTO; HORIBA, Ltd. -Particulate matter (PM) is one of the major contributors to air pollution. There is a need for simultaneous measurement of PM and its chemical properties to adjust processes parameters quickly and identify emission sources. The PX-375 simultaneously measures the mass concentration and elemental composition. The PX-375 relies on the beta ray attenuation and x-ray fluorescence techniques. A comparison with the manual analysis technique (ICP-MS) shows good correlation with field data collected.
open
PDF
1.52 MB
thumbnail
Tunable Laser Gas Analyzer TX-100
Author(*) Information: HORIBA, Ltd. In recent years, laser gas analyzers have been introduced into various plants such as incineration plants and petrochemical plants. Since laser gas analyzers do not require the troublesome process of gas-sampling at the time of measurement, laser gas analysis provides fast response time which enables the plants to operate with high efficiency. The cross-stack laser gas analyzer is already widely used, there are several issues surrounding this device. Not only does the cross-stack analyzer have a restricted place for installation, but it also requires complicated operations to remove the analyzer from the stack for calibrated. As a response to these circumstances, HORIBA has succeeded in creating the TX-100, which is the first direct-insertion laser hydrogen chloride analyzer in Japan*1 to use a probe type optical system to overcome the prior issues. This paper will feature the principles, aspects, and examples of measurements at incineration plants. *1: In-company investigation in August 2018
open
PDF
3.84 MB
thumbnail
Rationalized solution for water quality management by IoT - Suggestion “HAKARU EXpress”
Author: Hiroshi KANDA*, Hirotaka EGUCHI, Hisato TAKIGUCHI, Hideaki TANAKA, Kazuhiro IRIE ; HORIBA Advanced Techno, Co., Ltd. -"HAKARU EXpress" is a solution-based business aimed at streamlining water quality management, offering to solve the problems that Japan as a society is currently facing, including the issues of how to pass on technical know-how to other workers, as well as reducing manpower required for management in order to make operations more efficient. HAKARU EXpress differs from conventional business models in that it offers the value inherent in the water quality “values” measured by these instruments. This system is used to remotely monitor the condition of water quality measuring devices to optimize inspections and rapidly respond in the case of a malfunction as the manufacturer performs all tasks from data analysis to preventive maintenance. In this paper, we describe the results of using HAKARU EXpress with our Automatic Total Nitrogen/Phosphorus Monitoring System, a water quality measuring device used in the field of factory wastewater management, as our first line of business, and explain the objectives and future prospects of this system.
open
PDF
1.39 MB
thumbnail
Development of Multi-Component Gas Analyzer VA-5000 series
Author: Kazunori MIZUMOTO*; HORIBA, Ltd. -The VA-5000 series is a series of Multi-Component Gas Analyzers that can measure up to four components with one unit. Measurement principles of NDIR (non-dispersive infrared method), CLA (chemiluminescence analysis), and Oxygen analysis method (MPA (magnetopneumatic method), zirconia method, and galvanic cell method) can be utilized. This product has been developed as a successor to the Multi-Component Gas Analyzer VA-3000 series. It has been improved in such aspects as miniaturization of the device size, increasing the maximum number of components that can be measured (maximum: 4 components), high sensitivity (minimum concentration range: 50 ppm), operability. This article describes the features of the VA-5000 series and introduces examples of application to the IGCC (Integrated coal Gasification Combined Cycle).
open
PDF
3.67 MB
thumbnail
Introduction of the high precision stationary IR Thermometer IT-480 Series
Author: Yu TAKIGUCHI*: HORIBA, Ltd. -IT-480 series is infrared radiation thermometer and developed for industrial need temperature control with high accuracy and high repeatability. IT-480 series can measure temperature non-contactly and nondestructively by measuring infrared rays from measurement target, different from conventional contact thermometer. High accuracy and high repeatability were realized by thermopile sensor using MEMS technology of silicon semiconductor process, optical interference filter eliminating influence of atmosphere, and high precision blackbody furnace as calibration standard for temperature measurement. In this paper, we describe the measurement principle and features of radiation thermometer and introduce the high-precision infrared thermometer IT-480 series.
open
PDF
3.23 MB
thumbnail
How pulsed operation has revolutionized Glow Discharge Optical Emission Spectrometry
Author: Sofia GAIASCHI*, Patrick CHAPON, Akira FUJIMOTO, Tatsuhito NAKAMURAA; HORIBA FRANCE SAS -RF Glow discharge Optical Emission Spectrometry is a recognized analytical method for elemental depth profile analysis of surface and interfaces of solid layered materials. The possibility of easily pulsing the RF source has widened the application domains and enhanced the performances and for all recent applications, whether it is enhanced depth resolution, measurement of fragile materials, plasma cleaning or use of the GD source for SEM observation, pulsed operation is a key asset. In this paper we will illustrate the benefits of pulsed RF operation in Glow Discharge Optical Emission Spectrometry.
open
  • Products
    • By Products (A-Z)
    • Automotive
    • Medical
    • Process and Environment
    • Scientific
    • Semiconductor
  • Applications
    • Drinking Water Utilities
    • Automotive Manufacturing
    • Semiconductor Manufacturing Process
    • Research and Testing Laboratories
  • Technology
    • Glow Discharge Spectroscopy
    • Pressure-based Flowmetry
    • Quadrupole Mass Spectrometry
    • Raman Spectroscopy
  • Service
    • On-Site Support
    • Spare Parts and Consumables
  • Company
    • News
    • Events
    • Career
    • History
    • Corporate Culture
  • Contact
    • Career Contact
    • Contact Form
    • Worldwide Locations
    • Investor Relations Contact

Terms and Conditions Privacy Notice Cookies